Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Med Chem ; 263: 115935, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989057

RESUMO

A series of hybrid inhibitors, combining pharmacophores of known kinase inhibitors bearing anilino-purines (ruxolitinib, ibrutinib) and benzohydroxamate HDAC inhibitors (nexturastat A), were generated in the present study. The compounds have been synthesized and tested against solid and hematological tumor cell lines. Compounds 4d-f were the most promising in cytotoxicity assays (IC50 ≤ 50 nM) vs. hematological cells and displayed moderate activity in solid tumor models (EC50 = 9.3-21.7 µM). Compound 4d potently inhibited multiple kinase targets of interest for anticancer effects, including JAK2, JAK3, HDAC1, and HDAC6. Molecular dynamics simulations showed that 4d has stable interactions with HDAC and members of the JAK family, with differences in the hinge binding energy conferring selectivity for JAK3 and JAK2 over JAK1. The kinase inhibition profile of compounds 4d-f allows selective cytotoxicity, with minimal effects on non-tumorigenic cells. Moreover, these compounds have favorable pharmacokinetic profiles, with high stability in human liver microsomes (e.g., see t1/2: >120 min for 4f), low intrinsic clearance, and lack of significant inhibition of four major CYP450 isoforms.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Janus Quinases , Purinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
2.
Sci Rep ; 13(1): 21006, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030668

RESUMO

We report a series of 1,3-diphenylureido hydroxamate HDAC inhibitors evaluated against sensitive and drug-resistant P. falciparum strains. Compounds 8a-d show potent antiplasmodial activity, indicating that a phenyl spacer allows improved potency relative to cinnamyl and di-hydrocinnamyl linkers. In vitro, mechanistic studies demonstrated target activity for PfHDAC1 on a recombinant level, which agreed with cell quantification of the acetylated histone levels. Compounds 6c, 7c, and 8c, identified as the most active in phenotypic assays and PfHDAC1 enzymatic inhibition. Compound 8c stands out as a remarkable inhibitor, displaying an impressive 85% inhibition of PfHDAC1, with an IC50 value of 0.74 µM in the phenotypic screening on Pf3D7 and 0.8 µM against multidrug-resistant PfDd2 parasites. Despite its potent inhibition of PfHDAC1, 8c remains the least active on human HDAC1, displaying remarkable selectivity. In silico studies suggest that the phenyl linker has an ideal length in the series for permitting effective interactions of the hydroxamate with PfHDAC1 and that this compound series could bind as well as in HsHDAC1. Taken together, these results highlight the potential of diphenylurea hydroxamates as a privileged scaffold for the generation of potent antimalarial HDAC inhibitors with improved selectivity over human HDACs.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Humanos , Inibidores de Histona Desacetilases/farmacologia , Antimaláricos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Relação Estrutura-Atividade , Histona Desacetilase 1
3.
Artigo em Inglês | MEDLINE | ID: mdl-33488681

RESUMO

BACKGROUND: In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. METHODS: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. RESULTS: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. CONCLUSION: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.

4.
J. venom. anim. toxins incl. trop. dis ; 27: e20200066, 2021. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1154773

RESUMO

In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom's, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.(AU)


Assuntos
Animais , Venenos de Serpentes , Antivenenos , Bothrops , Serina Proteases , Peptídeos
5.
J Venom Anim Toxins Incl Trop Dis, v. 27, e20200066, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3486

RESUMO

Background: In Central and South America, snakebite envenomation is mainly caused by Bothrops spp. snakes, whose venoms feature significant biochemical richness, including serine proteases. The available bothropic antivenoms are efficient in avoiding fatalities, but do not completely neutralize venom serine proteases, which are co-responsible for some disorders observed during envenomation. Methods: In order to search for tools to improve the antivenom’s, 6-mer peptides were designed based on a specific substrate for Bothrops jararaca venom serine proteases, and then synthesized, with the intention to selectively inhibit these enzymes. Results: Using batroxobin as a snake venom serine protease model, two structurally similar inhibitor peptides were identified. When tested on B. jararaca venom, one of the new inhibitors displayed a good potential to inhibit the activity of the venom serine proteases. These inhibitors do not affect human serine proteases as human factor Xa and thrombin, due to their selectivity. Conclusion: Our study identified two small peptides able to inhibit bothropic serine proteases, but not human ones, can be used as tools to enhance knowledge of the venom composition and function. Moreover, one promising peptide (pepC) was identified that can be explored in the search for improving Bothrops spp. envenomation treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...